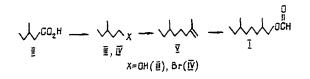
- 4. K. Mori, S. Masuda, and M. Matsui, Agric. Biol. Chem., <u>42</u>, No. 5, 1015 (1978).
- 5. P. Place, M. -L. Roumestant, and J. Gore, J. Org. Chem., 43, No. 5, 1001 (1978).
- 6. Y. Magnusson, Tetrahedron, <u>34</u>, No. 9, 1385 (1978).
- 7. É. P. Serebryakov and G. D. Gamalevich, Izv. Akad. Nauk SSR, Ser. Khim., No. 1, 114 (1987).
- 8. P. J. Kocienski and J. M. Ansell, J. Org. Chem., <u>42</u>, No. 6, 1102 (1977).
- 9. V. N. Odinokov, G. Yu. Ishmuratov, R. Ya. Kharisov, and G. A. Tolstikov, Khim. Prir. Soedin., No. 4, 573 (1989).
- 10. U. M. Dzhemilev, A. G. Ibragimov, A. P. Zolotarev, R. R. Muslukhov, and G. A. Tolstikov, Izv. Akad. Nauk, Ser. Khim., No. 1, 207 (1989).
- 11. U. M. Dzhemilev, A. G. Ibragimov, A. P. Zolotarev, R. R. Muslukhov, and G. A. Tolstikov, Izv. Akad. Nauk, Ser. Khim. (1992).
- 12. C. Kaiser and F. Pueschel, Chem. Ber., 97, No. 10, 2926 (1964); Chem. Abstr., 61, No. 12, 14517 (1964).
- C. Niemann and C. D. Wagner, J. Org. Chem., <u>7</u>, 227 (1942).
 Nguen Kong Khao, M. V. Mavrov, and É. P. Serebryakov, Izv. Akad. Nauk SSSR, Ser. Khim., No. 3, 690 (1988).

INSECT PHEROMONES AND THEIR ANALOGUES

XLII. SYNTHESIS OF 2,6-DIMETHYLOCT-1-YL FORMATE - A MIMIC OF THE


AGGREGATION PHEROMONE OF FLOUR BEETLES

V. N. Odinokov, G. Yu. Ishmuratov, M. P. Yakovleva, UDC 547.381+542.91+632.936.2 and G. A. Tolstikov

2-6-Dimethyloctan-1-ol, the formate of which is a mimic of the aggregation pheromone of the flour beetles Tribolium confusum and T. castaneum, has been synthesized by the hydroboration of 2,6-diemthyloct-1-ene, obtained from β-methylvaleric acid.

The aggregation pheromone of the flour beetles $\underline{\text{Tribolium}}$ confusum and $\underline{\text{T.}}$ castaneum, which has been identified as 4,8-dimethyldecanal [1], is deactivated under the conditions of use, being oxidized in the air. A stable analogue of the pheromone has been found - 2,6dimethyloct-1-yl formate (I) - for which a five-stage synthesis based on the condensation of methyl sodiomalonate with the difficultly accessible 4-methylhex-3E-en-1-yl bromide has been proposed [2].

We have developed a more rational route for the synthesis of the formate (I) from the available ß-methylvaleric acid (II). Its reductioin to 3-methylpentan-1-ol with the aid of lithium tetrahydroaluminate took place with a high yield, as also did the following oeprations for obtaining the bromide (IV), which are described in [3]. Condensation of the bromide (IV) with methallyl chloride completed the construction of the carbon skeleton, and hydroboration of 2,6-dimethyloct-1-ene (V) so obtained, with oxidation of the organoboron intermediate by alkaline H_2O_2 and treatment with formic acid, led to the desired formate (I), the overall yield of which amounted to 54%, calculated on the initial acid (II).

Institute of Organic Chemistry, Urals Branch, Russian Academy of Sciences, Ufa. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 571-573, September-October, 1992. Original article submitted October 28, 1991.

EXPERIMENTAL

IR spectra were taken on a UR-20 spectrometer (in a film). and PMR spectra on a Tesla BS-567 spectrometer, with a working frequency of 100 MHz, using CDCl_3 as solvent, the chemical shifts being given in the δ scale relative to the signal of TMS (internal standard). GLC analysis was conducted on a Chrom-5 instrument, with silicone SE-30 (5%) on Chromaton N-AW-DMCS (0.16-0.20 mm) as the stationary phase at a working temperature of 50-300°C using helium as the carrier gas.

<u>2-Methylpental-1-ol (III)</u>. At 20°C, under argon, a solution of 9.5 g (82.0·10⁻³ mole) of 3-methylpentanoic acid (II) in 37 ml of abs. diethyl ether was added to a suspension of 3.23 g (8.50·10⁻³ mole) of LiAlH₄ in 50 ml of abs. diethyl ether; the mixture was boiled for 2 h and was then cooled to 0°C. treated dropwise with 7 ml of water, and stirred for 1 h at room temperature, after which it was extracted with diethyl ether (4 × 100 ml), and the extract was dried with NaSO₄ and distilled. This gave 7.86 g (94%) of the alcohol (III), $n_D^{2^5}$ 1.4112, b.p. 152°C, IR and PMR spectra identical with those given in [3].

<u>2,6-Dimethyloct-1-ene (V).</u> At -15°C, under argon, 1.6 ml of a 0.1 M solution (0.16· 10^{-°} mole) of Li_2CuCl_4 was added to a solution of 3.0 g (33.0·10⁻³ mole) of methallyl chloide in 14 ml of abs. THF; the mixture was stirred for 10 min, and then a solution of the Grignard reagent prepared in 90 ml of abs. THF from 1.24 g (51.0·10⁻³ g-atom) of magnesium and 8.11 g (49.0·10⁻³ mole) of 1-bromo-3-methylpentane (IV), obtained from the alcohol (III) with a yield of 79% according to [3], was added dropwise. The reaction mixture was stirred at -10°C for 2 h and its temperature was then raised to that of the room over 1 h, and, after another 12 h, 50 ml of a saturated solution of NH₄Cl cooled to 5°C was added, the products were extracted with diethyl ether (3 × 200 ml), and the extract was washed with saturated NaCl solution, dried with MgSO₄, and evaporated. The residue was distilled, to give 6.12 g (89%) of the olefin (V), bp 70-71°C (35 mm), IR and PMR spectra identical with those given in [4].

<u>2,6-Dimethyloct-1-yl Formate (I).</u> At 25°C, under argon, a solution of 2.9 ml of $BF_3 \cdot Et_2O$ in 11 ml of abs. THF was added dropwise to a suspension of 4.86 g (33.0 $\cdot 10^{-3}$ mole) of the alkene (V) and 0.73 g (19.3 $\cdot 10^{-3}$ mole) of NaBH₄, and, after stirring for 2 h, 1.5 ml of water and then 30 ml of a mixture (1:1) of a 3 N solution of NaOH and 30% H₂O₂ was added, and the reaction mixture was stirred for 15 h; then it was extracted with diethyl ether (3 × 200 ml), and the extract was washed with saturated NaCl solution, dried with Na₂SO₄, and evaporated. The residue (4.86 g) after chromatography [SiO₂, hexane-diethyl ether (7:3)] was dissolved in a mixture of 25.5 ml of HCOOH and 12 ml of abs. THF, and the solution was stirred at room temperature for 2 h and it was then diluted with diethyl ether (0.5 liter) and was washed successively with saturated solutions of NaHCO₃ and NaCl, dried with MgSO₄, and evaporated. The residue was chromatographed [SiO₂, pentane-diethyl ether (9:1)], giving 5.08 g (82%) of the formate (I), nD²⁶ 1.4269 [2]. IR spectrum (ν , cm⁻¹): 1195 (C-O-C), 1385 (CH₃), 1730 (C=O). PMR spectrum (100 MHz, CDCl₃): 0.7-1.0 (m. 9H, CH₃), 1.05-1.85 (m, 8H, CH₂, CH), 3.88-4.1 (m, 2H, H-1), 8.08 (s, 1H, HC-O).

Ö

LITERATURE CITED

- 1. T. Suzuki, Agric. Biol. Chem., <u>44</u>, No. 10, 2519 (1980).
- K. Mori, S. Kuwahara, and M. Fujiwhara, Proc. Indian Acad. Sci., Chem. Sci., <u>100</u>, No. 2-3, 113 (1988).
- 3. K. Mori and H. Watanabe, Tetrahedron, <u>40</u>, No. 2, 299 (1984).
- 4 R. S. Randad and G. H. Kulkarni, Indian J. Chem., <u>25b</u>, No. 3, 296 (1986).